音频分类​

📅 2025-10-20 19:16:39 ✍️ admin 👁️ 6379 ❤️ 958
音频分类​

音频分类 ​INFO

音频分类、音频处理入门

音频分类任务是指将音频信号按照其内容的类别归属进行划分。例如,区分一段音频是音乐、语音、环境声音(如鸟鸣、雨声、机器运转声)还是动物叫声等。其目的是通过自动分类的方式,高效地对大量音频数据进行组织、检索和理解。

在现在音频分类的应用场景,比较多的是在音频标注、音频推荐这一块。同时,这也是一个非常好的入门音频模型训练的任务。

在本文中,我们会基于PyTorch框架,使用 ResNet系列模型在 GTZAN 数据集上进行训练,同时使用SwanLab监控训练过程、评估模型效果。

Github:https://github.com/Zeyi-Lin/PyTorch-Audio-Classification数据集:https://pan.baidu.com/s/14CTI_9MD1vXCqyVxmAbeMw?pwd=1a9e 提取码: 1a9eSwanLab实验日志:https://swanlab.cn/@ZeyiLin/PyTorch_Audio_Classification-simple/charts更多实验日志:https://swanlab.cn/@ZeyiLin/PyTorch_Audio_Classification/charts1. 音频分类逻辑 ​本教程对音频分类任务的逻辑如下:

载入音频数据集,数据集为音频WAV文件与对应的标签以8:2的比例划分训练集和测试集使用torchaudio库,将音频文件转换为梅尔频谱图,本质将其转换为图像分类任务使用ResNet模型对梅尔频谱图进行训练迭代使用SwanLab记录训练和测试阶段的loss、acc变化,并对比不同实验之间的效果差异2. 环境安装 ​本案例基于Python>=3.8,请在您的计算机上安装好Python。

我们需要安装以下这几个Python库:

pythontorch

torchvision

torchaudio

swanlab

pandas

scikit-learn一键安装命令:

shellscriptpip install torch torchvision torchaudio swanlab pandas scikit-learn3. GTZAN数据集准备 ​本任务使用的数据集为GTZAN,这是一个在音乐流派识别研究中常用的公开数据集。GTZAN数据集包含 1000 个音频片段,每个音频片段的时长为 30 秒,共分为 10 种音乐流派:包括布鲁斯(Blues)、古典(Classical)、乡村(Country)、迪斯科(Disco)、嘻哈(Hip Hop)、爵士(Jazz)、金属(Metal)、流行(Pop)、雷鬼(Reggae)、摇滚(Rock),且每种流派都有 100 个音频片段。

GTZAN数据集是在 2000-2001 年从各种来源收集的,包括个人 CD、收音机、麦克风录音等,代表了各种录音条件下的声音。

数据下载方式(大小1.4GB):

百度网盘下载:链接: https://pan.baidu.com/s/14CTI_9MD1vXCqyVxmAbeMw?pwd=1a9e 提取码: 1a9e通过Kaggle下载:https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification在Hyper超神经网站下载BT种子进行下载:https://hyper.ai/cn/datasets/32001注意,数据集中有一个音频是损坏的,在百度网盘版本里已经将其剔除。

下载完成后,解压到项目根目录下即可。

4. 生成数据集CSV文件 ​我们将数据集中的音频文件路径和对应的标签,处理成一个audio_dataset.csv文件,其中第一列为文件路径,第二列为标签:

(这一部分先不执行,在完整代码里会带上)

pythonimport os

import pandas as pd

def create_dataset_csv():

# 数据集根目录

data_dir = './GTZAN/genres_original'

data = []

# 遍历所有子目录

for label in os.listdir(data_dir):

label_dir = os.path.join(data_dir, label)

if os.path.isdir(label_dir):

# 遍历子目录中的所有wav文件

for audio_file in os.listdir(label_dir):

if audio_file.endswith('.wav'):

audio_path = os.path.join(label_dir, audio_file)

data.append([audio_path, label])

# 创建DataFrame并保存为CSV

df = pd.DataFrame(data, columns=['path', 'label'])

df.to_csv('audio_dataset.csv', index=False)

return df

# 生成或加载数据集CSV文件

if not os.path.exists('audio_dataset.csv'):

df = create_dataset_csv()

else:

df = pd.read_csv('audio_dataset.csv')处理后,你会在根目录下看到一个audio_dataset.csv文件:

5. 配置训练跟踪工具SwanLab ​SwanLab 是一款开源、轻量的 AI 实验跟踪工具,提供了一个跟踪、比较、和协作实验的平台。SwanLab 提供了友好的 API 和漂亮的界面,结合了超参数跟踪、指标记录、在线协作、实验链接分享等功能,让您可以快速跟踪 AI 实验、可视化过程、记录超参数,并分享给伙伴。

配置SwanLab的方式很简单:

注册一个账号:https://swanlab.cn在安装好swanlab后(pip install swanlab),登录:bashswanlab login在提示输入API Key时,去设置页面复制API Key,粘贴后按回车即可。

6. 完整代码 ​开始训练时的目录结构:

|--- train.py

|--- GTZANtrain.py做的事情包括:

生成数据集csv文件加载数据集和resnet18模型(ImageNet预训练)训练20个epoch,每个epoch进行训练和评估记录loss和acc,以及学习率的变化情况,在swanlab中可视化train.py:

pythonimport torch

import torch.nn as nn

import torch.optim as optim

import torchaudio

import torchvision.models as models

from torch.utils.data import Dataset, DataLoader

import os

import pandas as pd

from sklearn.model_selection import train_test_split

import swanlab

def create_dataset_csv():

# 数据集根目录

data_dir = './GTZAN/genres_original'

data = []

# 遍历所有子目录

for label in os.listdir(data_dir):

label_dir = os.path.join(data_dir, label)

if os.path.isdir(label_dir):

# 遍历子目录中的所有wav文件

for audio_file in os.listdir(label_dir):

if audio_file.endswith('.wav'):

audio_path = os.path.join(label_dir, audio_file)

data.append([audio_path, label])

# 创建DataFrame并保存为CSV

df = pd.DataFrame(data, columns=['path', 'label'])

df.to_csv('audio_dataset.csv', index=False)

return df

# 自定义数据集类

class AudioDataset(Dataset):

def __init__(self, df, resize, train_mode=True):

self.audio_paths = df['path'].values

# 将标签转换为数值

self.label_to_idx = {label: idx for idx, label in enumerate(df['label'].unique())}

self.labels = [self.label_to_idx[label] for label in df['label'].values]

self.resize = resize

self.train_mode = train_mode # 添加训练模式标志

def __len__(self):

return len(self.audio_paths)

def __getitem__(self, idx):

# 加载音频文件

waveform, sample_rate = torchaudio.load(self.audio_paths[idx])

# 将音频转换为梅尔频谱图

transform = torchaudio.transforms.MelSpectrogram(

sample_rate=sample_rate,

n_fft=2048,

hop_length=640,

n_mels=128

)

mel_spectrogram = transform(waveform)

# 确保数值在合理范围内

mel_spectrogram = torch.clamp(mel_spectrogram, min=0)

# 转换为3通道图像格式 (为了适配ResNet)

mel_spectrogram = mel_spectrogram.repeat(3, 1, 1)

# 确保尺寸一致

resize = torch.nn.AdaptiveAvgPool2d((self.resize, self.resize))

mel_spectrogram = resize(mel_spectrogram)

return mel_spectrogram, self.labels[idx]

# 修改ResNet模型

class AudioClassifier(nn.Module):

def __init__(self, num_classes):

super(AudioClassifier, self).__init__()

# 加载预训练的ResNet

self.resnet = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1)

# 修改最后的全连接层

self.resnet.fc = nn.Linear(512, num_classes)

def forward(self, x):

return self.resnet(x)

# 训练函数

def train_model(model, train_loader, val_loader, criterion, optimizer, num_epochs, device):

for epoch in range(num_epochs):

model.train()

running_loss = 0.0

correct = 0

total = 0

for i, (inputs, labels) in enumerate(train_loader):

inputs, labels = inputs.to(device), labels.to(device)

outputs = model(inputs)

loss = criterion(outputs, labels)

loss.backward()

optimizer.step()

optimizer.zero_grad()

running_loss += loss.item()

_, predicted = outputs.max(1)

total += labels.size(0)

correct += predicted.eq(labels).sum().item()

train_loss = running_loss/len(train_loader)

train_acc = 100.*correct/total

# 验证阶段

model.eval()

val_loss = 0.0

correct = 0

total = 0

with torch.no_grad():

for inputs, labels in val_loader:

inputs, labels = inputs.to(device), labels.to(device)

outputs = model(inputs)

loss = criterion(outputs, labels)

val_loss += loss.item()

_, predicted = outputs.max(1)

total += labels.size(0)

correct += predicted.eq(labels).sum().item()

val_loss = val_loss/len(val_loader)

val_acc = 100.*correct/total

current_lr = optimizer.param_groups[0]['lr']

# 记录训练和验证指标

swanlab.log({

"train/loss": train_loss,

"train/acc": train_acc,

"val/loss": val_loss,

"val/acc": val_acc,

"train/epoch": epoch,

"train/lr": current_lr

})

print(f'Epoch {epoch+1}:')

print(f'Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.2f}%')

print(f'Val Loss: {val_loss:.4f} | Val Acc: {val_acc:.2f}%')

print(f'Learning Rate: {current_lr:.6f}')

# 主函数

def main():

# 设置设备

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

run = swanlab.init(

project="PyTorch_Audio_Classification-simple",

experiment_name="resnet18",

config={

"batch_size": 16,

"learning_rate": 1e-4,

"num_epochs": 20,

"resize": 224,

},

)

# 生成或加载数据集CSV文件

if not os.path.exists('audio_dataset.csv'):

df = create_dataset_csv()

else:

df = pd.read_csv('audio_dataset.csv')

# 划分训练集和验证集

train_df = pd.DataFrame()

val_df = pd.DataFrame()

for label in df['label'].unique():

label_df = df[df['label'] == label]

label_train, label_val = train_test_split(label_df, test_size=0.2, random_state=42)

train_df = pd.concat([train_df, label_train])

val_df = pd.concat([val_df, label_val])

# 创建数据集和数据加载器

train_dataset = AudioDataset(train_df, resize=run.config.resize, train_mode=True)

val_dataset = AudioDataset(val_df, resize=run.config.resize, train_mode=False)

train_loader = DataLoader(train_dataset, batch_size=run.config.batch_size, shuffle=True)

val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False)

# 创建模型

num_classes = len(df['label'].unique()) # 根据实际分类数量设置

print("num_classes", num_classes)

model = AudioClassifier(num_classes).to(device)

# 定义损失函数和优化器

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=run.config.learning_rate)

# 训练模型

train_model(model, train_loader, val_loader, criterion, optimizer, num_epochs=run.config.num_epochs, device=device)

if __name__ == "__main__":

main()看到下面的输出,则代表训练开始:

访问打印的swanlab链接,可以看到训练的全过程:

可以看到Reset18模型,且不加任何策略的条件下,在训练集的准确率为99.5%,验证集的准确率最高为71.5%,val loss在第3个epoch开始反而在上升,呈现「过拟合」的趋势。

7. 进阶代码 ​下面是我训出验证集准确率87.5%的实验,具体策略包括:

将模型换成resnext101_32x8d将梅尔顿图的resize提高到512增加warmup策略增加时间遮蔽、频率屏蔽、高斯噪声、随机响度这四种数据增强策略增加学习率梯度衰减策略

进阶代码(需要24GB显存,如果要降低显存消耗的话,可以调低batch_size):

pythonimport torch

import torch.nn as nn

import torch.optim as optim

import torchaudio

import torchvision.models as models

from torch.utils.data import Dataset, DataLoader

import os

import pandas as pd

from sklearn.model_selection import train_test_split

import swanlab

import random

import numpy as np

# 设置随机种子

def set_seed(seed=42):

random.seed(seed)

os.environ['PYTHONHASHSEED'] = str(seed)

np.random.seed(seed)

torch.manual_seed(seed)

torch.cuda.manual_seed(seed)

torch.cuda.manual_seed_all(seed)

torch.backends.cudnn.deterministic = True

torch.backends.cudnn.benchmark = False

def create_dataset_csv():

# 数据集根目录

data_dir = './GTZAN/genres_original'

data = []

# 遍历所有子目录

for label in os.listdir(data_dir):

label_dir = os.path.join(data_dir, label)

if os.path.isdir(label_dir):

# 遍历子目录中的所有wav文件

for audio_file in os.listdir(label_dir):

if audio_file.endswith('.wav'):

audio_path = os.path.join(label_dir, audio_file)

data.append([audio_path, label])

# 创建DataFrame并保存为CSV

df = pd.DataFrame(data, columns=['path', 'label'])

df.to_csv('audio_dataset.csv', index=False)

return df

# 自定义数据集类

class AudioDataset(Dataset):

def __init__(self, df, resize, train_mode=True):

self.audio_paths = df['path'].values

# 将标签转换为数值

self.label_to_idx = {label: idx for idx, label in enumerate(df['label'].unique())}

self.labels = [self.label_to_idx[label] for label in df['label'].values]

self.resize = resize

self.train_mode = train_mode # 添加训练模式标志

def __len__(self):

return len(self.audio_paths)

def __getitem__(self, idx):

# 加载音频文件

waveform, sample_rate = torchaudio.load(self.audio_paths[idx])

# 将音频转换为梅尔频谱图

transform = torchaudio.transforms.MelSpectrogram(

sample_rate=sample_rate,

n_fft=2048,

hop_length=640,

n_mels=128

)

mel_spectrogram = transform(waveform)

# 仅在训练模式下进行数据增强

if self.train_mode:

# 1. 时间遮蔽 (Time Masking):通过随机选择一个时间步,然后遮蔽掉20个时间步

time_mask = torchaudio.transforms.TimeMasking(time_mask_param=20)

mel_spectrogram = time_mask(mel_spectrogram)

# 2. 频率遮蔽 (Frequency Masking):通过随机选择一个频率步,然后遮蔽掉20个频率步

freq_mask = torchaudio.transforms.FrequencyMasking(freq_mask_param=20)

mel_spectrogram = freq_mask(mel_spectrogram)

# 3. 随机增加高斯噪声

if random.random() < 0.5:

noise = torch.randn_like(mel_spectrogram) * 0.01

mel_spectrogram = mel_spectrogram + noise

# 4. 随机调整响度

if random.random() < 0.5:

gain = random.uniform(0.8, 1.2)

mel_spectrogram = mel_spectrogram * gain

# 确保数值在合理范围内

mel_spectrogram = torch.clamp(mel_spectrogram, min=0)

# 转换为3通道图像格式 (为了适配ResNet)

mel_spectrogram = mel_spectrogram.repeat(3, 1, 1)

# 确保尺寸一致

resize = torch.nn.AdaptiveAvgPool2d((self.resize, self.resize))

mel_spectrogram = resize(mel_spectrogram)

return mel_spectrogram, self.labels[idx]

# 修改ResNet模型

class AudioClassifier(nn.Module):

def __init__(self, num_classes):

super(AudioClassifier, self).__init__()

# 加载预训练的ResNet

self.resnet = models.resnext101_32x8d(weights=models.ResNeXt101_32X8D_Weights.IMAGENET1K_V1)

# 修改最后的全连接层

self.resnet.fc = nn.Linear(2048, num_classes)

def forward(self, x):

return self.resnet(x)

# 训练函数

def train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, num_epochs, device, run):

for epoch in range(num_epochs):

model.train()

running_loss = 0.0

correct = 0

total = 0

# 前5个epoch进行warmup

if epoch < 5:

warmup_factor = (epoch + 1) / 5

for param_group in optimizer.param_groups:

param_group['lr'] = run.config.learning_rate * warmup_factor

# optimizer.zero_grad() # 移到循环外部

for i, (inputs, labels) in enumerate(train_loader):

inputs, labels = inputs.to(device), labels.to(device)

outputs = model(inputs)

loss = criterion(outputs, labels)

loss.backward()

optimizer.step()

optimizer.zero_grad()

running_loss += loss.item()

_, predicted = outputs.max(1)

total += labels.size(0)

correct += predicted.eq(labels).sum().item()

train_loss = running_loss

train_acc = 100.*correct/total

# 验证阶段

model.eval()

val_loss = 0.0

correct = 0

total = 0

with torch.no_grad():

for inputs, labels in val_loader:

inputs, labels = inputs.to(device), labels.to(device)

outputs = model(inputs)

loss = criterion(outputs, labels)

val_loss += loss.item()

_, predicted = outputs.max(1)

total += labels.size(0)

correct += predicted.eq(labels).sum().item()

val_loss = val_loss/len(val_loader)

val_acc = 100.*correct/total

# 只在warmup结束后使用学习率调度器

if epoch >= 5:

scheduler.step()

current_lr = optimizer.param_groups[0]['lr']

# 记录训练和验证指标

swanlab.log({

"train/loss": train_loss,

"train/acc": train_acc,

"val/loss": val_loss,

"val/acc": val_acc,

"train/epoch": epoch,

"train/lr": current_lr

})

print(f'Epoch {epoch+1}:')

print(f'Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.2f}%')

print(f'Val Loss: {val_loss:.4f} | Val Acc: {val_acc:.2f}%')

print(f'Learning Rate: {current_lr:.6f}')

# 主函数

def main():

# 设置随机种子

set_seed(42)

# 设置设备

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

run = swanlab.init(

project="PyTorch_Audio_Classification-simple",

experiment_name="😄resnext101_32x8d",

config={

"batch_size": 16,

"learning_rate": 1e-4,

"num_epochs": 30,

"resize": 512,

"weight_decay": 0 # 添加到配置中

},

)

# 生成或加载数据集CSV文件

if not os.path.exists('audio_dataset.csv'):

df = create_dataset_csv()

else:

df = pd.read_csv('audio_dataset.csv')

# 划分训练集和验证集

train_df = pd.DataFrame()

val_df = pd.DataFrame()

for label in df['label'].unique():

label_df = df[df['label'] == label]

label_train, label_val = train_test_split(label_df, test_size=0.2, random_state=42)

train_df = pd.concat([train_df, label_train])

val_df = pd.concat([val_df, label_val])

# 创建数据集和数据加载器

train_dataset = AudioDataset(train_df, resize=run.config.resize, train_mode=True)

val_dataset = AudioDataset(val_df, resize=run.config.resize, train_mode=False)

train_loader = DataLoader(train_dataset, batch_size=run.config.batch_size, shuffle=True)

val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False)

# 创建模型

num_classes = len(df['label'].unique()) # 根据实际分类数量设置

model = AudioClassifier(num_classes).to(device)

# 定义损失函数和优化器

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(

model.parameters(),

lr=run.config.learning_rate,

weight_decay=run.config.weight_decay

) # Adam优化器

# 添加学习率调度器

scheduler = optim.lr_scheduler.StepLR(

optimizer,

step_size=10, # 在第10个epoch衰减

gamma=0.1, # 衰减率为0.1

verbose=True

)

# 训练模型

train_model(model, train_loader, val_loader, criterion, optimizer, scheduler,

num_epochs=run.config.num_epochs, device=device, run=run)

if __name__ == "__main__":

main()

可以看到提升的非常明显

期待有训练师能把eval acc刷上90!

8. 相关链接 ​Github:https://github.com/Zeyi-Lin/PyTorch-Audio-Classification数据集:https://pan.baidu.com/s/14CTI_9MD1vXCqyVxmAbeMw?pwd=1a9e 提取码: 1a9eSwanLab实验日志:https://swanlab.cn/@ZeyiLin/PyTorch_Audio_Classification-simple/charts更多实验日志:https://swanlab.cn/@ZeyiLin/PyTorch_Audio_Classification/chartsSwanLab官网:https://swanlab.cn